If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30v^2+11v+1=0
a = 30; b = 11; c = +1;
Δ = b2-4ac
Δ = 112-4·30·1
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*30}=\frac{-12}{60} =-1/5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*30}=\frac{-10}{60} =-1/6 $
| x+0.06x=580.000 | | x^2+300^2=600^2 | | 18x^2+37x+2=0 | | (2(86+-6y)+(12y+1)=180 | | 2x+18=7x-4 | | 5/6-x=8/15 | | (x+5)+8x=17 | | -105/3=21/n | | 20x+1=3^x | | 2.5=0.734956x+0.72992 | | 1.8/6=2.4/x | | x+0.06x=530,000 | | x+0.03x=530,000 | | 28=-8u+6(u+4) | | -7(n+3)+24=-3n-21 | | 4n-1=-13 | | 5x^2-12x-30=0 | | (x+1)(x+2)=9 | | (x+.5)(x+1)=9 | | (9x+7^6)/60^3)=99 | | 23x+120=180 | | 23x+120=90 | | -16t^2+23t+6=14 | | 6x+5=6x+x-4 | | 7x-2-4x=3x+8 | | 45x+120=180 | | 45x+120=90 | | 13^-3x=8^-x-8 | | 131+x=180 | | 3x-29=2x+21 | | 4x-29=2x+21 | | -x+17=3x-19+5x |